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We formulate the time-dependent Ginzburg-Landau theory, with the assumption of local equilibrium made in
the reference frame floating with normal electrons. This theory with floating nucleation kernel is applied to the
far infrared conductivity in the Abrikosov vortex lattice. It yields better agreement with recent experimental
data �Phys. Rev. B 79, 174525 �2009�� than the customary time-dependent Ginzburg-Landau theory.
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The time-dependent Ginzburg-Landau �TDGL� equation
is a useful extension of the equilibrium Ginzburg-Landau
theory. Unfortunately, microscopic derivations1–5 guarantee
its validity under such restrictive conditions that it seems
more difficult to find justified nontrivial applications than to
solve it. The TDGL equation is thus most often applied be-
yond its nominal range of validity.

As one leaves the familiar vicinity of the superconducting
phase transition and asymptotically slow processes, the intui-
tive foundation of the theory becomes shaky. The TDGL
theory contains an assumption of local equilibrium, which is
dependent on reference frame; when we adapt the
equilibrium-based equation to nonequilibrium problems, we
should at least work in the reference frame in which elec-
trons are as close to local equilibrium as possible. This is the
frame floating with the normal current in the background of
a superconducting condensate. To this end, in this paper we
present what we refer to as a floating nucleation kernel.

The standard TDGL theory is formulated using a kernel
static in the laboratory system. We will show that compared
to the TDGL theory in the floating system, the laboratory
formulation lacks a term which is particularly important at
high frequencies of the driving field. We will demonstrate the
effects of this term on the conductivity in the subgap far-
infrared �FIR� region. Comparing our results with recent FIR
magnetotransmission measurements of Ikebe et al.,6 we will
show that use of the floating nucleation kernel improves
agreement between the theory and experimental data.

Let us first describe the magnetotransmission measure-
ment. It is performed on a thin layer perpendicularly pen-
etrated by the magnetic field in the form of vortices. The
incident FIR light is perpendicular to the surface and its elec-
tric field drives currents, which determine the amplitude and
phase of the transmitted light, which is measured.

Both the normal and the superconducting electrons are
accelerated by the electric field and experience a friction
with the lattice. The friction of the condensate is much
weaker since Joule heat develops only in vortex cores mov-
ing perpendicularly to the electric field. The relative contri-
bution of these components to the current depends on the
frequency of the driving field; the higher the frequency the
higher will be the fraction of the normal current.

It is useful to inspect characteristic times for NbN, the

material used by Ikebe et al.6 The optical gap 2�
=5.3 meV implies the maximal subgap frequency �
�10 THz. The mean time between two collisions of the
normal electron is �n�5 fs, therefore, during a single period
of the subgap FIR field, the electron loses momentum more
than a hundred times. At zero magnetic field, the condensate
suffers no friction. The field of amplitude E accelerates the
condensate to velocity e�E /�m�, while a normal electron is
accelerated to eE�n /m. At the measurement temperature, T
=3 K and Tc=15 K, the density of condensed electrons ex-
ceeds the normal density, therefore, the condensate clearly
dominates the total current. A different situation obtains,
however, for the Joule heat. The condensate current is out of
phase with the driving electric field and generates no heat.
The normal current is in-phase, producing heat. If the mag-
netic field penetrates the sample, the condensate generates
the Joule heat due to motion of vortices. We will see that for
the subgap FIR frequencies, the condensate Joule heat value
is much smaller than the amount of heat generated by normal
electrons.

To identify the Joule heat, it is necessary to measure the
transmission coefficient, including its phase. This allows one
to determine the complex conductivity � with Im � giving
the off-phase current and Re � for the in-phase current. Ikebe
et al.6 achieved this task by splitting short pulses and mixing
them again after one of branches passed through the sample.
As mentioned, we will compare their experimentally estab-
lished � with theoretical predictions based on the TDGL
theory in the laboratory and the floating coordinate system.

We will use the electric field E���=Re�Ee−i��� and cur-
rent J���=Re�Je−i���. The complex conductivity is defined
via J=�E. The current has a small Hall component, which
we neglect in our discussion for convenience.

The TDGL equation derived using the static kernel,7
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e�
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A�2

� + 	� + 
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describes the evolution of the condensate including a relax-
ation of the GL function � toward its equilibrium value. The
vector potential is that of the internal magnetic field as well
as the electric field of the FIR light; B=��A and E=
−�1 /c���A. The electric current
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is composed of circulating diamagnetic currents and oscillat-
ing response to the light. We solve Eq. �1� to linear order in
E and eliminate the diamagnetic currents by averaging over
the elementary cell of the Abrikosov vortex lattice; Js= �js�
= �B /
0�
celldxdyjs. The supercurrent, Js=�sE, gives the
condensate conductivity

�s =
3�0


A

1 − t − b

b − i��s
, �3�

where t=T /Tc, b=B /Hc2 are the dimensionless temperature
and magnetic field, �0 is the normal state conductivity, 
A
=1.16 is the Abrikosov constant for hexagonal vortex lattice,
and �s=��1− t� /	. Deriving Eq. �3�, we have used the GL
parameter8

� =
12��0	�2�2

c2�1 − t�2 . �4�

The zero-temperature coherence length is determined by the
upper critical field; �2=
0 / �2�Hc2

0 �. Here, Hc2
0 =15 T is ob-

tained via the linear extrapolation Hc2=Hc2
0 �1− t� from ex-

perimental data in Fig. 3 of Ref. 6. The normal-state conduc-
tivity �0=2 ·104 /� cm, experimentally established6 at 20 K,
has weak temperature dependence and can be used at 3 K.

In Fig. 1, one can see that the imaginary part of �s from
formula �3� reproduces recent experimental data of Ikebe et
al.6 Here, we use the GL parameter �=40, the only fitting
parameter in the present theory. It is adjusted to fit the imagi-
nary part of the conductivity at 7 T. Our main interest is in
the Joule heat given by the real part of the conductivity.

Formula �3� was derived for the dense Abrikosov vortex
lattice. Theoretically, the region of nominal validity is
B�4 T, at the temperature T=3 K. It is, therefore, some-
what surprising that theoretical curves of Im � slightly de-
part from the experimental data only at the lowest magnetic
field B=1 T.

Due to the relaxation term ��t�, the TDGL Eq. �1� in-

cludes a damping and generates Joule heat,9 Q̇
=4kBT��� /2��������2�, where the brackets denote the time
average: ������ /2��
0

2�/�d��. The left-hand panel of Fig.
2 shows that the supercurrent produces Joule heat only at
vortex cores. The right-hand panel of Fig. 2 presents the
spatial distribution of the power absorbed by the condensate
from the electric field W= �js ·E�. The most intensive absorp-
tion is around vortices in regions elongated in the vertical
direction which is parallel to the electric field. Deep minima
of the absorption are between vortices in horizontal rows.
Comparing the two panels shows that the relation between
absorption and heat production is very nonlocal.

The fraction of Joule heat, due to the condensate, is small.
In Fig. 3, we compare the real part of the condensate con-
ductivity �3� with experiment. Indeed, the discrepancy be-
tween experimental data and Re �s indicates that the super-
current produces only a minor part of the Joule heat; the
normal current cannot be neglected.

From microscopic derivations1–3,10 of the GL theory, it
follows that the normal current and the supercurrent simply
add. Adding the current Jn=�0�1+ i�n��E, which would ap-
pear in the normal state one obtains the TDGL conductivity

�GL = �s + �n, �5�

with the normal conductivity �n=�0�1+ i�n��. For experi-
mentally established6 values �0=2 ·104 /� cm and �n=5 fs,
the normal conductivity yields a negligible contribution to
Im �GL, as seen in Fig. 1, but it provides the dominant con-
tribution to Re �GL. One can see in Fig. 3 that Re �GL is
much closer to observed values than Re �s. It is higher than
the observed values, however. This problem becomes more
serious at lower magnetic fields, where the observed real part
of total conductivity is further reduced well below the level
of the normal conductivity, see Fig. 4, while the TDGL con-
ductivity is always larger, Im �GL� Im �n.

The simple addition of normal current and supercurrent
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FIG. 1. Imaginary part of the conductivity giving nondissipative
currents: thin lines are the superconducting condensate conductivity
Im �s �dotted�, the TDGL conductivity Im �GL �full�, and the two-
fluid modification of the TDGL conductivity Im �tf �dashed�. The
heavy line is the conductivity Im �fk evaluated in the floating sys-
tem. Experimental data of Ikebe et al. �Ref. 6� at 7 T �•� are in the
nominal validity range of the TDGL theory, while the lower mag-
netic fields 5 T, 3 T, and 1 T ��� are not.
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FIG. 2. Heat production �left� and the power absorption �right�
in the hexagonal Abrikosov vortex lattice: crosses denote centers of
vortices. The electric field is polarized vertically so that vortices
oscillate horizontally with amplitude shown by arrows. The Joule
heat is produced at vortex cores, their horizontal motion is respon-
sible for elongation of the heated region. Absorption of power is
rather delocalized. Its maxima are also around vortex cores but
elongated vertically. The rounded minima are between vortices.
Difference of these two maps shows that the “rigid” GL function
transfers the power to be dissipated in cores.
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works well close to the phase transition but it badly overes-
timates conductivity far from it. Apparently, it is insufficient
simply to add the supercurrent and the normal current; the
electric field accelerates all electrons. Since electrons in the
condensate escape frictional effects, this fraction of electrons
must be removed in order to obtain the normal conductivity.
An intuitive way to avoid double counting of condensed
electrons is to introduce a normal current reduced in the
spirit of the two-fluid model,

j̃n = �1 −
2���2

n
�Jn. �6�

The total current averaged over the elementary vortex lattice

cell, J=Js+ J̃n, leads to a conductivity

�tf = �s + �t + b��n, �7�

where we have evaluated the averaged normal fraction,
1–2����2� /n= t+b. One can see in Figs. 1 and 3 that the
two-fluid conductivity yields the same nondissipative cur-
rents described by Im �tf as the TDGL theory, but that it
allows for Re �tf smaller than the normal conductivity. In
fact Re �tf is too small, when compared to experimental data.

The reduced normal current �6� contradicts microscopic
studies.1–5 Indeed, the total current is derived from the
Nambu-Gor’kov Green’s function expanded in the gap, G

�G0+G0��G̃0�G0, where G0 gives jn and the second term
provides the supercurrent. Apparently, the double counting
has to be remedied within the supercurrent itself.

With this issue in mind, we shift to our formulation of the
theory, expressing the nucleation of superconductivity using
the floating nucleation kernel. The Cooper pairs are created
from electrons initially in the normal state, with mean veloc-
ity v=Jn / �en�. The free energy of condensation has to supply
the kinetic energy which electrons gain going from the nor-
mal component into the condensate, therefore, the stability
condition reads

1

2m��− i� � −
e�

c
A − m�v�2

� + 	� + 
���2� = − ���� .

�8�

We note that quantum kinetic energy is in fact a nonlocal
contribution of the nucleation kernel. For the floating kernel
it depends exclusively on the velocity differences of the nor-
mal and superconducting component.11

The corresponding supercurrent

j̃s =
e�

m�
Re �̄�− i� � −

e�

c
A − m�v�� �9�

we can write as j̃s= js−e�v���2= js− �2���2 /n�Jn, therefore,
this approach is free of double-counting.

If an effect of velocity v on the GL function is negligible,
then �=� and the total current jfk= j̃s+Jn obtained with the
floating kernel is not different from the current in the two-
fluid approximation jtf= js+ j̃n. In the presence of vortices, the
kinetic energy is nonzero due to diamagnetic currents and the
perturbation enters the TDGL equation in the linear order
leading to changes in the GL function. The averaged total

current J̃s+Jn then differs from Js+ J̃n. The magnetotrans-
mission thus allows us to test the TDGL theory formulated
with the floating nucleation kernel.

To obtain the conductivity, we do not need to evaluate the
modified GL function. The supercurrent modified by the
inertial force m���v is readily obtained from the condensate
conductivity �3�. The driving force in Eq. �9� is
���−�e� /c�A−m�v�=e�E+ i�� /e�n��nE, therefore,

J̃s = �s�1 + i
�

e�2n
�n�E . �10�

The conductivity corresponding to the current J̃s+Jn is given
by
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FIG. 3. Real part of the conductivity giving Joule heat: points
are experimental data of Ikebe et al. �Ref. 6� for 7 T �•�. The su-
perconducting condensate contribution �dotted line� given by for-
mula �3� is by an order of magnitude too small. The time-dependent
Ginzburg-Landau theory �thin line� adds a contribution of normal
electrons, see Eq. �5�, arriving at too high values. The two-fluid
approach �dashed line� reduces the conductivity subtracting double-
counted condensed electrons from the normal conductivity, see Eq.
�7�. The floating kernel approach �heavy line� given by Eq. �11�
removes double-counting from the supercurrents and yields the
closest agreement with experiment.
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FIG. 4. Real part of the conductivity giving the Joule heat:
points are experimental data of Ikebe et al. �Ref. 6� for 7 T �•�, 5 T
���, 3 T ���, and 1 T ���. The time-dependent Ginzburg-Landau
theory �thin line� given by Eq. �5� overestimates the dissipation.
The two-fluid approach given by Eq. �7� reduces the dissipation too
much leading to the underestimate. The floating kernel approach
�heavy line� given by Eq. �11� yields higher values although still
smaller than experimental data.
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�fk = �s�1 + i
�

e�2n
�n� + �n. �11�

In Fig. 1, we compare Im �fk with Im �s. One can see that
both values are very close except for at the smallest magnetic
field where Im �fk is closer to experimental data.

In contrast, the Joule heat obtained within various ap-
proximations is rather different. In Fig. 4, we compare the
standard TDGL theory with the floating kernel formulation.
Although none of the approximations provides satisfactory
values, among the tested approaches our floating kernel pre-
scription leads to values closest to experiment.

In summary, we have formulated a version of TDGL
theory using a floating nucleation kernel, meaning that the
assumption of local equilibrium is applied to electrons in the
moving reference frame of the normal current.

When compared with standard TDGL theory in the con-
text of far-infrared spectroscopy, we have found that the

floating kernel formulation yields better agreement with ex-
periment. In particular, recent published measurements of
conductivity were considered; since we have established the
GL parameter � from the nondissipative response given by
the imaginary part of the conductivity, our theory has no
fitting parameters with respect to the Joule heat given by the
real part of the conductivity.

Finally, since use of this approach does not generally
present significant additional complexity, it may be promis-
ing in the consideration of systems farther from equilibrium
than is usually amenable to analysis via standard TDGL
theory.
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